Randomized CP Tensor Decomposition

نویسندگان

  • N. Benjamin Erichson
  • Krithika Manohar
  • Steven L. Brunton
  • J. Nathan Kutz
چکیده

The CANDECOMP/PARAFAC (CP) tensor decomposition is a popular dimensionality-reduction method for multiway data. Dimensionality reduction is often sought since many high-dimensional tensors have low intrinsic rank relative to the dimension of the ambient measurement space. However, the emergence of ‘big data’ poses significant computational challenges for computing this fundamental tensor decomposition. Leveraging modern randomized algorithms, we demonstrate that the coherent structure can be learned from a smaller representation of the tensor in a fraction of the time. Thus, this simple but powerful algorithm enables one to compute the approximate CP decomposition even for massive tensors. The approximation error can thereby be controlled via oversampling and the computation of power iterations. In addition to theoretical results, several empirical results demonstrate the performance of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling

Tensor CANDECOMP/PARAFAC (CP) decomposition is a powerful but computationally challenging tool in modern data analytics. In this paper, we show ways of sampling intermediate steps of alternating minimization algorithms for computing low rank tensor CP decompositions, leading to the sparse alternating least squares (SPALS) method. Specifically, we sample the Khatri-Rao product, which arises as a...

متن کامل

Fast and Guaranteed Tensor Decomposition via Sketching

Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized computation of tenso...

متن کامل

A Practical Randomized CP Tensor Decomposition

The CANDECOMP/PARAFAC (CP) decomposition is a leading method for the analysis of multiway data. The standard alternating least squares algorithm for the CP decomposition (CP-ALS) involves a series of highly overdetermined linear least squares problems. We extend randomized least squares methods to tensors and show the workload of CP-ALS can be drastically reduced without a sacrifice in quality....

متن کامل

Completely Positive Tensors: Properties, Easily Checkable Subclasses, and Tractable Relaxations

The completely positive (CP) tensor verification and decomposition are essential in tensor analysis and computation due to the wide applications in statistics, computer vision, exploratory multiway data analysis, blind source separation, and polynomial optimization. However, it is generally NP-hard as we know from its matrix case. To facilitate the CP tensor verification and decomposition, more...

متن کامل

Decomposition of Big Tensors With Low Multilinear Rank

Tensor decompositions are promising tools for big data analytics as they bring multiple modes and aspects of data to a unified framework, which allows us to discover complex internal structures and correlations of data. Unfortunately most existing approaches are not designed to meet the major challenges posed by big data analytics. This paper attempts to improve the scalability of tensor decomp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.09074  شماره 

صفحات  -

تاریخ انتشار 2017