Randomized CP Tensor Decomposition
نویسندگان
چکیده
The CANDECOMP/PARAFAC (CP) tensor decomposition is a popular dimensionality-reduction method for multiway data. Dimensionality reduction is often sought since many high-dimensional tensors have low intrinsic rank relative to the dimension of the ambient measurement space. However, the emergence of ‘big data’ poses significant computational challenges for computing this fundamental tensor decomposition. Leveraging modern randomized algorithms, we demonstrate that the coherent structure can be learned from a smaller representation of the tensor in a fraction of the time. Thus, this simple but powerful algorithm enables one to compute the approximate CP decomposition even for massive tensors. The approximation error can thereby be controlled via oversampling and the computation of power iterations. In addition to theoretical results, several empirical results demonstrate the performance of the proposed algorithm.
منابع مشابه
SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling
Tensor CANDECOMP/PARAFAC (CP) decomposition is a powerful but computationally challenging tool in modern data analytics. In this paper, we show ways of sampling intermediate steps of alternating minimization algorithms for computing low rank tensor CP decompositions, leading to the sparse alternating least squares (SPALS) method. Specifically, we sample the Khatri-Rao product, which arises as a...
متن کاملFast and Guaranteed Tensor Decomposition via Sketching
Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized computation of tenso...
متن کاملA Practical Randomized CP Tensor Decomposition
The CANDECOMP/PARAFAC (CP) decomposition is a leading method for the analysis of multiway data. The standard alternating least squares algorithm for the CP decomposition (CP-ALS) involves a series of highly overdetermined linear least squares problems. We extend randomized least squares methods to tensors and show the workload of CP-ALS can be drastically reduced without a sacrifice in quality....
متن کاملCompletely Positive Tensors: Properties, Easily Checkable Subclasses, and Tractable Relaxations
The completely positive (CP) tensor verification and decomposition are essential in tensor analysis and computation due to the wide applications in statistics, computer vision, exploratory multiway data analysis, blind source separation, and polynomial optimization. However, it is generally NP-hard as we know from its matrix case. To facilitate the CP tensor verification and decomposition, more...
متن کاملDecomposition of Big Tensors With Low Multilinear Rank
Tensor decompositions are promising tools for big data analytics as they bring multiple modes and aspects of data to a unified framework, which allows us to discover complex internal structures and correlations of data. Unfortunately most existing approaches are not designed to meet the major challenges posed by big data analytics. This paper attempts to improve the scalability of tensor decomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.09074 شماره
صفحات -
تاریخ انتشار 2017